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Abstract
We use the numerical renormalization group method (NRG) to investigate a single-impurity
Anderson model with a coupling of the impurity to a superconducting host. Analysis of the
energy flow shows that, contrary to previous belief, NRG iterations can be performed up to a
large number of sites, corresponding to energy differences far below the superconducting gap
�. This allows us to calculate the impurity spectral function A(ω) very accurately for
frequencies |ω| ∼ �, and to resolve, in a certain parameter regime, sharp peaks in A(ω) close
to the gap edge.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The vast progress in nanofabrication during the last decades
made it possible to study basic physical effects in a very
controlled manner. One example of such highly controllable
devices are quantum dots [1], which are used, amongst various
applications, for a detailed and very controlled study of the
Kondo effect [2–5], which is one of the prime examples of
many-body phenomena. Below a critical temperature (Kondo
temperature TK) a local moment, provided by the spin of
an electron occupying the quantum dot, gets screened by
reservoir electrons within an energy window TK around the
Fermi energy.

These seminal experimental works on the Kondo effect,
together with the possibility to engineer reservoir properties,
raise the following intriguing question: What interesting
effects may arise if the local moment in the quantum dot is
coupled to superconducting leads while parameters like the
Kondo temperature or the superconducting gap can be adjusted
arbitrarily? In a superconductor as described by Bardeen,

Cooper and Schrieffer (BCS) [6], electrons with opposite spin
and momentum form Cooper pairs, thereby expelling the lead
density of states around the Fermi energy. An energy gap
occurs. Obviously, when combining a Kondo quantum dot with
superconducting reservoirs both effects compete: screening of
the local moment by electrons around the Fermi energy against
pair formation of the latter.

This competition has attracted a lot of interest and various
methods were used to analyze the properties of the system in
the above-mentioned limits, see for example the references
in [7] or [8–11]. In the early 1990s Satori et al [12]
proposed to apply the numerical renormalization group method
(NRG) [13, 14] to the problem. Since then NRG was used to
calculate the ground state and subgap bound state properties
like position and degeneracy [12, 15, 16] as well as their
spectral weight [17, 18]. Also dynamic quantities like the
spectral function [18] or the Josephson current [19, 20] can be
calculated with NRG, as was done recently.

The first main goal of the present paper is to gain insight
into the way NRG works when applied to a system of one
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local level coupled to a superconducting lead. NRG is a well
established method for solving strongly correlated impurity
problems. Actually, it was invented to solve the Kondo
problem [13] and since then has been generalized to various
schemes involving localized states coupled to fermionic [21] or
bosonic [22, 23] baths. For a review, see [14]. The key idea of
NRG is to discretize the conduction band logarithmically. This
leads to a chain Hamiltonian with exponentially decreasing
couplings, the so-called Wilson chain. It can be solved
iteratively by enlarging the system site by site: due to the
decreasing couplings every new site can be treated as a
perturbation of the old system, thus increasing the resolution
with every step.

It is, however, not at all obvious whether NRG still works
for superconducting leads at energy resolutions well below the
gap. This is because the pairing energy � is the same at all
energy scales, thus remains a constant on-site contribution also
in the above-mentioned chain structure. At iterations where
the coupling of the Wilson chain reaches �, it is not obvious
whether added sites still can be understood as a perturbation in
the iterative process or not, that is whether NRG still works or
not.

In order to address this problem, we analyze in detail the
flow of the eigenenergies during the NRG procedure. We show
that NRG is indeed capable to resolve the continuum close
to the gap without any restriction on the energy scale of the
superconducting gap.

The second goal of this work consists in the calculation
of the impurity spectral function close to the gap edge at
zero temperature. As in the Anderson model (with normal
leads) a Kondo resonance may form. However, due to the
superconducting property of the leads a gap opens up around
the Fermi energy, cutting the resonance. Our main interest
lies in the study of the continuum contribution to the spectral
function close to the gap edge, implying the need of high
resolution in that regime. Our calculations cover not only the
regime � � TK, for which the continuum part of the spectral
function was studied in [18], but also � � TK. In the latter
regime we find a sharp peak at the gap edge, vastly exceeding
the Kondo resonance contribution. We expect this to lead
to an enhanced linear conductance, as observed in a recent
experiment [24] with carbon nanotube quantum dots coupled
to superconducting leads. They report dramatic enhancement
of the linear conductance (only) in the regime � � TK.

We find similar behavior of the spectral function in the
non-interacting case where an analytical solution exists. We
analyze this solution and compare our NRG results against it.
We find excellent agreement especially at energies close to the
gap, as expected from our study of the energy spectrum.

The paper is organized as follows. In section 2 we
introduce the superconducting-lead Anderson model (SC-AM)
and the NRG method. In section 3 the flow of the energy
spectrum of the SC-AM is analyzed. NRG is shown to work at
resolutions well below the energy scale of the superconducting
gap. Section 4 discusses the calculation of the spectral
function. In the last part we conclude and summarize our
results.

2. The model and the method

In this section we introduce our model for the quantum dot
coupled to a left and right superconducting reservoir, as well
as the method we use, the numerical renormalization group
method [13, 21]. We perform a Bogoliubov as well as a
particle–hole transformation. We derive the formulas in a
general form. For convenience, the discussions in the later
sections will be restricted to a real order parameter of the
superconductors, equivalent to only one lead. In the non-
interacting limit the system can be understood in terms of a
simple single-particle picture. The latter can be solved exactly
and will serve as a guideline for gaining a deeper understanding
of the problem.

2.1. Superconducting-lead Anderson model (SC-AM)

To describe a quantum state coupled to two superconducting
reservoirs, we consider the standard Anderson model (AM)
for a local level coupled to two metallic, non-interacting
reservoirs [25], and add a BCS-type term H�, describing pair
formation in the leads. This SC-lead Anderson model, to be
called SC-AM, is then described by

H = Hdot + Hhyb + Hlead + H�, (1)

with

Hdot =
∑

σ

εdndσ + Und↑nd↓ (2)

Hhyb =
∑

l=L ,R

∑

kσ

Vl(c
†
lkσ dσ + d†

σ clkσ ) (3)

Hlead =
∑

l=L ,R

∑

kσ

εkc†
lkσ clkσ (4)

H� = −
∑

l=L ,R

∑

k

�l( eiφl c†
lk↑c†

l−k↓ + e−iφl cl−k↓clk↑). (5)

Electrons on the dot with spin σ = {↑,↓} are created by d†
σ

and interact via the Coulomb repulsion U with each other,
ndσ = d†

σ dσ being the charge operator for spin σ . In the
hybridization term Hhyb, the coupling strength Vl between dot
and lead states is assumed to be real and independent of the
wavevector k. c†

lkσ creates an electron in lead l = L, R,
respectively. Hlead describes the conduction band of metallic
leads. We assume an isotropic and linearized dispersion. The
density of states is then constant, ρ0 = 1/2D, where the
band ranges from −D to D. In the following D = 1 will
serve as energy unit. The pairing of electrons with opposite
spin and momentum (Cooper pairs) is described by H�. �l

is the magnitude (later on often called the gap), φl the phase
of the order parameter of the superconductor. For simplicity,
we assume left–right symmetry, i.e. �l = �, φl = ±φ/2
and Vl = V , where l = L, R, respectively. Then the unitary
rotation

(
cekσ

cokσ

)
= 1√

2

(
e−iφ/4 eiφ/4

−i e−iφ/4 i e−iφ/4

) (
cLkσ

cRkσ

)

of the reservoir operators yields a real Hamiltonian.
It is well known [26, 27] that the Hamiltonian of a bulk

superconductor (equations (4) and (5)) can be diagonalized by
a Bogoliubov transformation. Note, though, that the SC-AM
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cannot be understood as an AM with a superconducting-lead

density of states (ρ� = |εk |/
√

ε2
k + �2). This is because

the Bogoliubov transformation explicitly depends on k. The
hybridization term c†

lkσ dσ + d†
σ clkσ would transform to a

complicated object that cannot be simplified by rotating the d
operators of the local dot space.

2.2. The numerical renormalization group method (NRG)

In the 1970s, Wilson came up with a scheme for
solving the Kondo problem nonperturbatively: the numerical
renormalization group (NRG) [13]. Since then it was
generalized to various schemes, describing localized electronic
states coupled to fermionic [21] or bosonic [22, 23] baths. The
NRG allows thermodynamic and dynamic properties of such
strongly correlated systems to be calculated at zero as well as
at finite temperature. We first discuss the method for the AM
(� = 0), then for � �= 0. For brevity we apply all NRG
transformations to the full SC-AM already in the discussion of
the AM.

The key idea of NRG is to discretize the conduction band
of the reservoir logarithmically. The Hamiltonian can then be
transformed to a chain Hamiltonian. In this representation,
equations (3)–(5) are mapped onto

Hhyb =
√

2�

π

∑

σ

[
cos

φ

4
( f †

e0σ dσ + h.c.)

− sin
φ

4
( f †

o0σ dσ + h.c.)

]
(6)

Hlead = 1
2

(
1 + 1




) ∑

l=e,o;σ

∞∑

n=0


−n/2 ξn ( f †
lnσ fln+1σ

+ f †
ln+1σ flnσ ) + h.c. (7)

H� = −�
∑

n

[
( f †

en↑ f †
en↓ + h.c.) − ( f †

on↑ f †
on↓ + h.c.)

]
. (8)

Electrons on site n in lead l = e, o are created by f †
nlσ .

The dot level only couples to the zeroth site of the so-called
Wilson chain Hlead, where the hybridization is given by � =
πρ2V 2 (the factor 2 stems from the two leads). 
 > 1 is
the discretization parameter of the conduction band. ξn =
(1 − 
−n−1)(1 − 
−2n−1)−1/2(1 − 
−2n−3)−1/2 ≈ 1 for large
n. The hopping matrix elements between successive sites of
Hlead fall off exponentially with 
−n/2. The resulting energy
scale separation ensures that the AM can be solved iteratively.
The recursion relation reads

H0 = 1/
√




[
Hdot + Hhyb − �

∑

l=e,o

∑

σ

sl

(
f †
l0↑ f †

l0↓ + h.c.
)]

HN+1 = √

 HN

+ 1
2

(
1 + 
−1

) ∑

l=e,o

∑

σ

ξN

(
f †
lNσ flN+1σ + h.c.

)

− � 
N/2
∑

l=e,o

∑

σ

sl

(
f †
lN+1↑ f †

lN+1↓ + h.c.
)

.

(9)

Here sl = ±1 for l = e, o, respectively. The initial
Hamiltonian of the system is related to the NRG Hamiltonian

by H = limN→∞ 
−(N−1)/2 HN . This relation is exact in the
limit 
 → 1 and N → ∞.

Sites are added successively and at each step the enlarged
system is diagonalized. Each added site then acts as a
perturbation of order 
−1/2 on the previous part of the chain.
Consequently, the typical energy resolution δn of the AM at
iteration n is given by δAM

n ∝ 
−n/2. Thus, by choosing the
length N of the chain large enough (so that 
−N/2 is much
smaller than all other energies in the problem), all relevant
energy scales can be resolved and treated properly. When
adding a site to the system, the dimension of the Hilbert space
gets multiplied by the dimension d of the state space of that
site, yielding d = 4 for a single fermionic lead (empty, singly
occupied (either up or down), doubly occupied). Therefore the
dimension of the Hilbert space increases exponentially with
the length of the chain. Wilson proposed a truncation scheme
according to which only the lowest Nkept eigenstates are kept
at each iteration, thereby ensuring that the dimension of the
truncated Hilbert space stays manageable. Recently, it was
shown that by keeping track of the discarded states a complete,
but approximate, basis of states can be constructed [28, 29].
This can be used to calculate dynamic properties like the
spectral function A (see equation (20) below) which rigorously
satisfy relevant sum rules [30, 31], like

∫
dωA(ω) = 1.

Applying the NRG mapping also to the pairing term of
the SC-AM (as already done above), an on-site contribution
appears, see equation (8), constant in magnitude for each site.
In the limit 
−n/2 � �, this additional term hardly affects
the properties of the system. But, when 
−n/2 ∼ �, it is not
obvious whether the added sites still act as a perturbation in
the iterative process (9) or not, that is whether the energy scale
separation still works or not. In section 3 we will show that the
separation of energy scales does work also at resolutions much
smaller than the gap.

2.3. Bogoliubov and particle–hole transformations

Satori et al [12] have shown that a computationally
more convenient representation of the Hamiltonian can be
obtained by performing a Bogoliubov–Valatin transformation
[bln,σ = 1/

√
2(σ fln,σ + f †

ln,−σ )] as well as a particle–hole

transformation [c̃l,2n,σ = bl,2n,σ ,−σ c̃l,2n−1,−σ = b†
l,2n−1,σ ].

n = −1 represents the dot, thus d̃σ = c̃−1,σ . Applying these
transformations to (9), the Hamiltonian reads

H̃dot = U

2
(1 − ñd + 2ñd↑ñd↓) −

(
εd + U

2

)
(d̃†

↑d̃†
↓ + d̃↓d̃↑)

(10)

H̃hyb =
√

2�

π

∑

σ

[
cos

φ

4
(c̃†

e0σ d̃σ + h.c.)

− sin
φ

4
(c̃†

o0σ d̃σ + h.c.)

]
(11)

H̃lead = 1
2 (1 + 
−1)

∑

l=eo

∞∑

σ,n=0


−n/2 ξn (c̃†
lnσ c̃ln+1σ

+ c̃†
ln+1σ c̃lnσ ) (12)

3
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Figure 1. Single-particle and many-body eigenenergies for the SC-AM (U = εd = 0). (a) Schematic sketch of a typical single-particle level
spectrum of the SC-AM. The continuum is represented by a discrete set of closely-spaced levels. The construction of the lowest lying
many-body eigenstates in terms of single-particle states according to (14) is illustrated. The corresponding energies Em (w.r.t. the ground state
energy) and quantum numbers of the many-body states are also given. Two dots stand for a doubly occupied level. (b) Single-particle energies
ε j (ε+

j > 0: stars, ε−
j < 0: crosses), as well as the corresponding many-body eigenenergies Em (lines) for � = 10−4 and �/� = 0.3 at a late

NRG iteration (δn � �). The many-body eigenenergies depicted in (a) are specified on the right-hand side. The single-particle continuum
energies go like ε±

j − � ∝ 
2 j , see section 3.2. Due to many-particle excitations, this dense profile repeats as substructures in the many-body
spectrum at m� + rε0 (m = 1, 2, . . ., r = 0, 1, 2).

H̃� = −
∞∑

n=0,σ

(−1)n�(ñenσ − ñonσ ). (13)

Operators in the new basis will always be denoted by a
tilde, e.g. ñdσ = d̃†

σ d̃σ or ñlnσ = c̃†
lnσ c̃lnσ . The Q̃

nonconserving property of H� has been transferred to H̃dot.
This has two useful effects: (i) for the symmetric model not
only the z-component of the total spin (per iteration), S̃zN =
1
2

∑N
l,n=−1(ñln↑ − ñln↓ ), but also the particle number Q̃N =∑N

l,n=−1,σ (ñlnσ −1) is a conserved quantum number (note that

this definition yields Q̃ = 0 for the Fermi sea together with a
singly occupied dot at � = 0). Therefore the dimensions of
the matrices to be diagonalized at each iteration (and therefore
the numerical effort) is reduced significantly. (ii) Additionally,
in the non-interacting symmetric case (U, εd = 0) the
Hamiltonian takes a very simple quadratic form. We will focus
on its exact solution in the next section. In section 3 the
resulting single-particle picture will serve as a tool to gain a
deeper understanding of reasons why NRG does work for the
SC-AM.

For simplicity, we use φ = 0 in the following. Then, the
odd channel decouples and the problem reduces to an effective
one-lead system. The resulting model is equivalent to that
describing an impurity embedded in a bulk superconductor.

2.4. Single-particle picture

Some properties of the system show up already in the non-
interacting case, U = 0. The Hamiltonian is then of quadratic
form and we only have to solve a single-particle problem. The
NRG Hamiltonian ((10)–(13)) can be diagonalized up to a
large number of iterations exactly—that is without truncating
the Hilbert space. One can use the resulting exact solution as
benchmark for the NRG result. We obtain very good agreement
in the energy spectrum, thus confirming that NRG is capable
of accurately treating superconducting leads. In section 3 the
single-particle picture will also serve as a tool to gain a deeper
understanding of reasons why NRG does work for the SC-AM.

Without lack of generality we restrict the discussion to
the symmetric case, εd = 0. Then the NRG Hamiltonian
only contains quadratic terms of the form a†

i ai ′ , with ai

some fermionic operator. For every iteration N the single-
particle Hamiltonian can be diagonalized by some unitary
transformation T to HN = ∑N

j=−1 ε jα
†
j α j . Here α j = T †

j i ai

and the eigenstates |n j 〉 = α
†
j |vac〉 satisfy α

†
j α j |n j 〉 = n j |n j〉.

The many-body eigenstates and the energy spectrum follow
from the Schrödinger equation

H |m〉 = Em|m〉, Em =
(∑

{n j }m
ε j n j

)
− E0, (14)

with the many-body eigenstates |m〉 = |n1 . . . nN 〉 and
eigenenergies Em which are calculated w.r.t. the ground state
energy E0. In the ground state |0〉 all single-particle levels with
energy below the Fermi energy εF = 0 are occupied, thus E0 =∑

l(εl <0) εl . Expectation values of local operators are evaluated

easily, e.g. 〈0|a−1a†
−1|0〉 = ∑

l U †
−1,l〈0|αlα

†
l |0〉Ul,−1 =∑

l(εl <0) |Ul,−1|2.
The construction of the many-body spectrum from the

single-particle energy levels using (14) is illustrated in figure 1
for the SC-AM. Figure 1(a) shows a sketch of a typical single-
particle spectrum. The single-particle level spectrum consists
of a continuum above and below the gap, |εl | > � (represented
by a discrete set of closely-spaced levels), as well as one
subgap level with energy 0 � ε0 < �, the so-called Andreev
level. Note that because of the discretized conduction band, we
also have a discretized continuum.

The sketch also demonstrates the construction of the
lowest lying many-body eigenenergies using (14). For � > 0,
no single-particle level exists at the Fermi energy and the
many-body ground state is a singlet (S̃z = 0, Q̃ = 0). The
first excitation is a degenerate doublet (E1,2 = ε0, S̃z = ±1/2,
Q̃ = 1), corresponding to the bound single-particle level,
occupied by either a spin up or down. If ε0 < �/2, an
additional subgap state forms (E3 = 2ε0 < �, S̃z = 0,
Q̃ = 2), corresponding to spin up and down occupying the
subgap single-particle level. Otherwise E3 > � is part of the
continuum energies. A concrete example of the many-body as

4
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0

Figure 2. Energy spectra ((a)–(c)) and the corresponding energy flow diagrams ((d)–(f)) for the lowest 280 eigenenergies of the even NRG
iterations of a SC-AM. U = 0.2, � = 0.01, TK = 1.25 × 10−5, 
 = 2.5 and Nkept = 512 in all plots. The iteration numbers NTK or N� ,
where δAM

n ≈ TK or �, respectively, are indicated by dashed or solid arrows. (a), (d) � = 0, AM. Since δAM
n ∝ 
−n/2, the eigenenergies (a)

fall off exponentially with n and the energy flow diagram (d) converges. At energy scale TK the localized spin gets screened by the conduction
electrons and the Kondo singlet (ground state) forms. ((b), (c), (e), (f)): � > 0. At energy scale � the exponential decrease crosses over to a
saturation towards �. The characteristic gap as well as the Andreev bound states form. Consequently, the flow diagram energies grow with
�
n/2 due to rescaling. For comparison, the result for the AM is indicated (brown (grey)), too. For � � TK ((b), (e)) it is energetically
favorable to break Cooper pairs and lower the energy by TK by screening the local spin, thus the ground state is a singlet. For � � TK ((c),
(f)) Cooper pair formation dominates the low-energy properties and the ground state is a doublet.

well as the single-particle eigenenergies is shown in figure 1(b).
Both the single-particle levels (stars, crosses) as well as the
resulting many-body eigenenergies are shown. On the vertical
axis the energies of the many-body eigenstates constructed in
figure 1(a) are specified.

3. Energy spectrum

In this section we analyze the many-body energy spectrum
generated during the iterative NRG procedure. As already
mentioned in the last section, the spectrum consists of a
continuum above and subgap bound states below the gap �.
The competition between the Kondo effect and Cooper pair
formation is reflected in the ground state properties of the
system. A detailed analysis of the structure of the continuum
with the help of the single-particle picture reveals that,
interestingly, energy scale separation is even more efficient at
energy scales smaller than the gap (compared to the AM).

Figure 2 shows the 280 lowest lying many-body
eigenstates for the even NRG iterations of a SC-AM in
different regimes of TK/�. We first discuss the case � = 0
(AM, figures 2(a), (d)), then � �= 0. For the AM the effective
level spacing of the Wilson chain drops exponentially with
every added site (see discussion above). The energy resolution
of the kept states is enhanced exponentially with increasing
iteration n, see figure 2(a). Thus, an appropriate way of
visualizing the physics at different energy scales is given by
the rescaled energy spectrum. In these ‘energy flow diagrams’,
the eigenenergies are plotted in units of 
−n/2 ∝ δAM

n , see
figure 2(d). Only at energy scales where the system changes its
properties, the flow of the eigenenergies changes. For the AM
we are interested in the lowest of these scales, the Kondo scale

TK =
√

U�
2 exp[ πεd

2�U (U + εd)], indicated by dashed arrows in

the figure. For details of the various fixed points of the AM see
e.g. [21].

In contrast to the exponential decaying couplings of the
Wilson chain (7), the on-site contribution � of the pairing
term (8) is constant in magnitude for each site. Consequently,
for δn < �, the BCS contribution is a relevant perturbation
and determines the physics of the system. Typical energy
spectra (or energy flow diagrams, respectively) for finite � are
shown in figures 2(b), (c) (or 2(e), (f)). At energy scale �,
the exponential reduction of the eigenenergies crosses over to
a saturation towards �. The characteristic gap as well as the
subgap Andreev bound states form.

The structure of the continuum energies near the gap will
be discussed in section 3.2. We show there that even though
the on-site terms of H� do not fall off exponentially like the
couplings of the Wilson chain, the energy scale separation (the
heart of NRG) still works.

3.1. Competition between Kondo effect and Cooper pair
formation

The system possesses two energy scales determining the
characteristics of the system, TK and �. The resulting
competition between Kondo effect and Cooper pair formation
is reflected in the ground state properties of the system: for
TK � �, H� is the dominant term of the Hamiltonian. The
system lowers its energy by � by the formation of Cooper
pairs leading to effective spin zero bosons (singlets) in the
reservoir. The lead density of states gets depleted, a gap from
−� to � forms. Therefore no electrons are available to screen
the localized spin. Consequently, the ground state is a spin
doublet with Sz = ±1/2. In case when the Kondo effect
is dominant (TK � �), it is energetically favorable to break
Cooper pairs so that the localized spin on the quantum dot gets

5
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Figure 3. Positive single-particle energies plotted for three different
scalings of the vertical axis for even iterations. The vertical dashed
line indicates the iteration N� for which δAM

n ≈ �. (a) Energy versus
iteration number. The single-particle levels flow towards the gap and
form a continuum. The bound state can be also seen. (b) The
eigenenergies ε representing the continuum in units of 
−n/2,
corresponding to the customary scaling for energy flow diagrams of
the (normal) AM. For n < N� , the single-particle energies run
horizontally, since they obey ε jn ∝ 
 j−n/2, see text and [21].
(c) ε′ in units of 
−n . The single-particle energies run horizontally
for n > N� , since here they scale as ε′

jn ∝ 
2 j−n . The line sloping
upwards at the left of figures (b) and (c) is due to the fact that at
every iteration a degeneracy is split and hence an extra eigenenergy is
generated.

screened by the non-paired electrons near the Fermi energy.
The energy is lowered by TK and as ground state the typical
Kondo singlet forms (Sz = 0). The influences of the different
scales is also apparent in the NRG energy flow diagrams, see
figures 2(e), (f). For example, for TK � �, the effect of H�

sets in at iterations after the Kondo fixed point is reached (i.e. at
lower energies). A phase diagram for the singlet and doublet
ground state including the spectral weight of the bound states
was recently derived by [18] (also using NRG) for the whole
regime of �, �.

3.2. Analysis of the continuum

The key feature of NRG is the energy scale separation:
the couplings between successive sites of the Wilson chain
describing a normal lead fall off exponentially, therefore
each added site can be treated as a perturbation of the
previous system. However, when generalizing the AM to
superconducting leads, a constant on-site energy � is added
at each site (see (9)). In order to understand why NRG works
even at resolutions well below �, we now take a closer look
at the structure of the continuum produced during the iterative
NRG procedure.

We therefore analyze the (positive) continuum of the
single-particle problem. Figure 3 shows an example of a
single-particle spectrum for three different scalings of the
vertical axis: In (a) the (unscaled) spectrum is plotted versus
the iteration number. The NRG eigenenergies decrease with
iteration number n and tend towards �. However, the decrease
of the continuum eigenenergies depends on whether n is
smaller or larger than N�, the iteration number for which

0

Figure 4. Logarithmic discretization of εk leads to high resolution at
the band edge of the BCS quasiparticle eigenenergies.

δAM
n ≈ �. We find the following asymptotic behavior:

ε jn:
{

ε jn ∝ 
 j−n/2 for n < N� ,

ε′
jn = ε jn − � ∝ 
2 j−n for n > N� .

(15)

Primed energies will henceforth always be understood to be
measured relative to �. Both relations of (15) are illustrated in
figures 3(b) and (c), by plotting the eigenenergies ε jn and ε′

jn

in units of 
−n/2 and 
−n , respectively.
These results can already be understood by further

reducing the problem to only the superconducting reservoir
(Hl + H�): for fixed iteration n, the j -dependence
of (15) reflects the standard logarithmic discretization of the
continuous conduction band, according to which the single-
particle energies of the Wilson chain grow in powers of

, i.e. εk ∝ 
 j [21]. Inserting this into the single-
particle dispersion relation of BCS quasiparticles, the effective
discretization of the isolated superconducting reservoir is
obtained, as sketched in figure 4. The limits yield

ξk =
√

ε2
k + �2:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ξk ≈ εk → 
 j for εk � �

(n < N�),

ξ ′
k ≈ ε2

k

2�
→ 
2 j for εk � �

(n > N�).

(16)
The n-dependence of (15) follows heuristically from consider-
ing the coupling of two neighboring sites n−1 and n, with hop-
ping matrix element tn ∼ δAM

n and on-site energy ±� (see (12)
and (13), respectively). Since tn ∼ 
−n/2, the eigenstates λ±
of this two-state problem show the asymptotic behavior

λn± = ±
√

�2 + t2
n :

⎧
⎨

⎩

λn+ ≈ tn ∝ 
−n/2 for n < N�,

λ′
n+ ≈ t2

n

2�
∝ 
−n for n > N�.

(17)
Note that the 
−n/2 versus 
−n scaling of the two limits

of (15) implies that the energy scale separation is actually
more efficient in the second limit, when the gap dominates the
spectral features. This establishes one of the central results
of the present paper: The energy scale separation, being
the heart of the NRG approach, is not impaired but rather
enhanced (w.r.t. �) by the presence of the energy gap in the

6
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superconducting leads. Increasing the chain length leads to an
exponential enhancement of the resolution at the continuum
edge at �.

The many-body spectrum is constructed according to
equation (14). For n < N�, as in the AM, the mean level
spacing (at fixed iteration) does not depend on energy, as can
be seen in figures 2(d)–(f). For n > N� the gap forms, and
every many-body state with energy Em < � + ε0 can only
stem from adding one electron (or hole) to the Fermi sea. ε0

is the energy of the single-particle subgap level. Therefore in
this regime E jσn = ε jn. Due to many-particle excitations,
this dense profile repeats as substructures in the many-body
spectrum at m� + rε0 (m = 1, 2, . . .; r = 0, 1, 2), as can
be found in figure 1(b), which was calculated for some late
iteration with n � N�.

4. Spectral function

In this section we study basic properties of the spectral
function that are special for the SC-AM. We therefore begin by
analyzing the analytic solution of the non-interacting case and
find not only a continuum for energies |ω| > � together with
subgap resonances (as expected from the energy spectrum),
but also a sharp peak at the gap edge for � < �. The
agreement between NRG results and the analytic solution is
excellent, especially when resolving that sharp feature, again
confirming that NRG is valid also at resolutions well below the
gap. Subsequently, we consider spectral functions at finite U ,
which show some of the same feature as found for the non-
interacting case.

Knowledge of the energy spectrum suffices to calculate
thermodynamic quantities, such as the impurity specific heat.
We focus here instead on the more complex calculation of the
local spectral function Aσ (ω). As this is a dynamic quantity, all
energy scales have to be taken into account even at temperature
zero. The spectral function is defined as

Aσ (ω) = − 1

π
Im GR

σ (ω), (18)

where GR
σ (ω) is the Fourier-transformed of the retarded

Green’s function GR
σ (t) ≡ −iθ(t)〈[dσ (t), d†

σ (0)]+〉. Moti-
vated by the structure of the eigenspectrum we distinguish two
contributions to the spectral function,

Aσ (ω) =
∑

|Em |<�

wmδ(ω − Em) + Aσ (ω) θ(|ω| − �). (19)

wm denotes the weight of excitations to the Andreev bound
states, which contribute as δ-peaks within the gap between −�

and �. Aσ (ω) represents the continuum contribution, with
|ω| > �. In the following we present results for the continuum
part of the spectral function. We focus on the behavior of the
continuum contribution of the spectral function close to the
gap.

4.1. NRG

NRG calculations of the spectral function are based on the
Lehmann representation:

Aσ (ω) = 1

Z

∑

mm′

(
e−Em/kB T + e−Em′ /kB T

) ∣∣〈m|d†
σ |m ′〉∣∣2

× δ(ω − (Em − Em′)). (20)

Here Z = ∑
m e−Em /kBT is the partition function at

temperature T , and |m〉 denotes an exact eigenstate of the
Hamiltonian with eigenenergy Em . The matrix elements of
these operators as well as the eigenenergies can be calculated
with NRG at all energy scales. The δ-peaks of the continuum
contribution are broadened as described by [31, 32]. As
expected from the findings about the spectra, broadening w.r.t.
� (i.e. using ω′ = |ω| − � in [31]) leads to good results,
see below. We use the full density matrix NRG [30, 31] at
effective temperature zero, i.e. at temperature much smaller
than any other energy scale of the problem. Only matrix
elements connecting the ground state(s) with excited states
then contribute.

As NRG parameters we choose 
 = 1.8 and use z-
averaging [33] (where for fixed 
 data is averaged for different
discretizations) with an interval spacing of δz = 0.05 to
improve the results. We keep Nkept = 1024 at the first 6 to
10 iterations, and use Nkept = 512 for the rest of the iterations.
We test NRG against the analytic solution at U = 0 and find
excellent agreement, implying that the broadening procedure
as well as the choice of Nkept are adequate for the present
problem.

4.2. Spectral function for U = 0

For analyzing the basic properties of A(ω), we first review the
non-interacting problem. There, the local (retarded) Green’s
function is known exactly [18]. The continuum contribution to
G0 then reads

G0
�(ω) = 1

D(ω)
{(ω + εd) + i�ρ�}, (21)

with D(ω) = (ω2 − �2 − ε2
d) + i2�ωρ�, and ρ� the density

of states of a bulk superconductor. At temperature T = 0, the
latter has the limits

ρ�(ω) = θ(|ω| − �) |ω|√
ω2 − �2

≈

⎧
⎪⎨

⎪⎩

√
�

2|ω′| θ(ω′), for ω′ � �,

1, for � � |ω|.
(22)

For � = 0, equation (21) simplifies to the well known formula
for the AM, G0

�=0(ω) = (ω − εd − i�)−1. For the spectral
function we obtain from equations (21) and (18),

A(ω) = (ω + εd)
2 + �2

(ω2 − ε2
d − �2)2 + (2�2ωρ�)2

� ρ�/π. (23)

This function is shown for various parameter combinations in
figure 5. The common features are (i) the atomic resonance of
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Figure 5. Continuum contribution A(ω) to the spectral function for U = 0, � = 0.008 and � = 10−4 as well as � = 10−2 obtained from
equation (23). (a), (c) show a symmetric and (b), (d) an asymmetric SC-AM. In (a), (b), a linear scale is used revealing sharp peaks near the
gap if ω′

c � �. The insets, which zoom in the region of the gap edge, show the full height of the near-gap peaks. They also indicate, using
position and length of arrows, the energy and weight of the subgap contribution for the case � = 10−2 (calculated with NRG). In (c), (d), for
the same data a log–log scale is used to elucidate the asymptotic behavior of (25) (dashed and dotted lines) and (26) (dashed–dotted lines).

width (half width half maximum) ∼� centered at εd , reflecting
the level broadening due to the level-lead coupling and (ii) a
gap from −� to �, with (iii) bound states at some energy
±ωB inside the gap. The energy and weight of the subgap
contribution is indicated for � = 10−2 by position and length
of the red arrows in the insets of figures 5(a), (b). Here they
are calculated with NRG, but can be also obtained analytically,
see equation (7) of [18]. Note that for finite � bound states
exist also for εd � �, see figure 5(b). They asymptotically
approach the gap edge for |εd | → ∞, in accordance with
equation (7) of [18].

Additionally, the continuum part of the spectral function
may feature near-gap sharp peaks, point of interest in the
following discussion. The behavior near the gap edge can be
approximated (using equation (22) and writing s = sign(ω))
by

A(ω) ≈ (s� + εd)
2 + �2

(�2 − �2 − ε2
d)

2 + 4�2�2 + 2�2�3/ω′ �ρ�/π

(24)

≈

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(s� + εd)
2 + �2

2�2�3
�ρ�ω′/π ∝ √

ω′,

for ω′ � ω′
c,

(s� + εd)
2 + �2

(�2 − �2 − ε2
d)

2 + 4�2�2
�ρ�/π ∝ 1√

ω′ ,

for ω′
c � ω′ � �.

(25)

The limits given in (25) are indicated by the thin lines
in figures 5(c), (d): A(ω) increases as

√
ω′ when ω′ is

increased from 0 (dashed lines), decreasing again for ω′ >

ω′
c = 2�2�3

(�2−�2−ε2
d )2+4�2�2 (which is the zero of derivative of

equation (24)). If ω′
c � �,�, this leads to a very sharp near-

gap peak which decreases as ρ� (dotted lines). Then the near-
gap spectral function is greatly enhanced compared to the AM
(where the symmetric case yields A(0)π� = 1).

The solution of the AM (dash–dotted lines) describes the
high-energy limit of the SC-AM:

A(ω) ≈ �/π

(ω − εd)2 + �2
= − 1

π
Im G0

0 for � < |ω|.
(26)

The emergence of the near-gap peak is depicted in
figure 6(a) for the symmetric model, where the gap � is varied
over four orders of magnitude, starting from � = 0. For
� = 10−4, we also show numerical NRG results (fat solid
line). Their agreement with the analytical results is excellent.
The height of the near-gap peak does not depend on εd , see
figure 6(b), where εd is increased up to 8� for fixed � = 10−4.

4.3. Spectral function for finite U

Figure 7 shows spectral functions of the SC-AM for finite U
and −U < εd < 0. The two atomic resonances of width
� are now separated by the Coulomb repulsion, thereby they
are centered near εd and εd + U . The Coulomb repulsion
also drives the Kondo effect, yielding a sharp resonance of
width TK pinned at the Fermi energy. This resonance is cut
by a gap reaching from −� to �, reflecting the influence
of the superconducting lead. Depending on the ratio TK/�,
the Kondo resonance can be cut completely (TK/� � 1) or
emerge clearly (TK/� � 1).

Additionally, a similar near-gap feature as found for the
non-interacting case may emerge. For TK/� � 1, a sharp

8
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Figure 6. Continuum contribution A(ω′) to the spectral function for U = 0, � = 0.008, as obtained from (23), for (a) various values of � and
εd = 0 (symmetric model) and (b) � = 10−4 and various values of εd (asymmetric model). For ω′

c � � a sharp peak forms at the gap edge.

The increase (decrease) of A(ω′) goes as ω′ 1
2 (ω′− 1

2 ). NRG results, shown for � = 10−4 only (thick black lines), are in excellent agreement
with the exact analytical results for ω′ � �. Note in (b) that the height of the near-gap peak at the gap edge does not depend on εd .

Figure 7. Continuum contribution A(ω) to the spectral function for U = 0.6, � = 0.049, calculated using NRG. (a), (c) show a symmetric
and (b), (d) an asymmetric SC-AM. In (a), (b), a linear scale is used revealing the sharp near-gap peaks appearing for � � TK. The position
εd of the local level is indicated by an arrow. The insets zoom into the gap edge and show the sharp peaks as well as the subgap resonances
(for � = 3 × 10−2, indicated by arrows). In (c), (d), A(ω′) is plotted on a log–log scale for various parameters. The asymptotic behavior of
the near-gap peaks is in agreement with that given in (25) and (26). In particular, for ω′ → 0, the continuum edge decreases as

√
ω′.

(c) εd = −U/2, TK = 10−3, various �. The singlet–doublet transition occurs between �/TK = 0.3 and 3 (orange (grey): ground state is
doublet, black: singlet). (d) � = 3 × 10−5, various εd , � � TK always.

resonance forms at the gap edge, highly exceeding the Kondo
resonance, see figure 7 for the symmetric case (where the
height of the Kondo resonance is given by 1/π�) as well as the
antisymmetric case. The asymptotic behavior of the near-gap
peak is in agreement with that given in equations (25) and (26).
In particular, for ω′ → 0, the continuum edge decreases as√

ω′.

5. Conclusion

The NRG is a well established method for a variety of
quantum impurity models. It is usually applicable in the whole
parameter range and allows to calculate physical quantities

for a wide range of temperatures and frequencies. In this
paper we showed that in the presence of a superconducting
reservoir, NRG provides information for resolutions far below
the energy scale of the gap �. Moreover, Wilsonian energy
scale separation, being the heart of the success of the NRG
approach, is not impaired but rather enhanced by the presence
of the energy gap of the superconducting leads. This allows
sharp features of spectral functions at the continuum gap edge
to be resolved. Our calculations of the impurity spectral
function cover the whole region from � � TK to � � TK. In
the latter case, we find a sharp peak at the continuum gap edge,
vastly exceeding the Kondo resonance contribution. We expect
this to result in an enhanced linear conductance, as recently
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reported for experiments with carbon nanotube quantum dots
coupled to superconducting leads [24].

The ability of the NRG to resolve spectral functions at
energy resolutions well below the gap should be useful for
other problems as well. As discussed in detail in [34], the
problem of an impurity in a superconducting host can be
mapped (under certain conditions) to a model in which the
superconductor couples to a normal metal, with a modified
density of states. For the problem studied in this paper we have
performed such a mapping; the resulting Hamiltonian is given
in equation (8). In this case, the oscillating on-site energies,
(−1)n�, generate a hard gap of width 2�.

This connection allows us, in principle, to calculate the
dynamic quantities for impurity models with arbitrary gapped
bath spectral function (but for this one still has to develop an
algorithm which produces directly the chain parameters from
the hybridization function). Such calculations might also help
to improve the resolution of the NRG in DMFT calculations
for the Hubbard model where the standard implementation of
the NRG does not describe the shape of the Hubbard bands
properly (for dynamic DMRG calculations for this problem,
see [35]).
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